A Molecular Rotor that Measures Dynamic Changes of Lipid Bilayer Viscosity Caused by Oxidative Stress
نویسندگان
چکیده
Oxidation of cellular structures is typically an undesirable process that can be a hallmark of certain diseases. On the other hand, photooxidation is a necessary step of photodynamic therapy (PDT), a cancer treatment causing cell death upon light irradiation. Here, the effect of photooxidation on the microscopic viscosity of model lipid bilayers constructed of 1,2-dioleoyl-sn-glycero-3-phosphocholine has been studied. A molecular rotor has been employed that displays a viscosity-dependent fluorescence lifetime as a quantitative probe of the bilayer's viscosity. Thus, spatially-resolved viscosity maps of lipid photooxidation in giant unilamellar vesicles (GUVs) were obtained, testing the effect of the positioning of the oxidant relative to the rotor in the bilayer. It was found that PDT has a strong impact on viscoelastic properties of lipid bilayers, which 'travels' through the bilayer to areas that have not been irradiated directly. A dramatic difference in viscoelastic properties of oxidized GUVs by Type I (electron transfer) and Type II (singlet oxygen-based) photosensitisers was also detected.
منابع مشابه
Direct investigation of viscosity of an atypical inner membrane of Bacillus spores: a molecular rotor/FLIM study.
We utilize the fluorescent molecular rotor Bodipy-C12 to investigate the viscoelastic properties of hydrophobic layers of bacterial spores Bacillus subtilis. The molecular rotor shows a marked increase in fluorescence lifetime, from 0.3 to 4ns, upon viscosity increase from 1 to 1500cP and can be incorporated into the hydrophobic layers within the spores from dormant state through to germination...
متن کاملEffect of bilayer flexibility and medium viscosity on separation of liposomes upon stagnation
Liposomes are widely used as drug delivery systems in different forms including osmotic pumps, infusion and IV injection. In spite of these, there is no data available about their behavior under convective flow (e.g. infusion or osmotic pumps) and upon stagnation in such drug delivery systems. As a part of a series of investigations in this area, the present study investigates the effects of vi...
متن کاملMolecular rheometry: direct determination of viscosity in Lo and Ld lipid phases via fluorescence lifetime imaging.
Understanding of cellular regulatory pathways that involve lipid membranes requires the detailed knowledge of their physical state and structure. However, mapping the viscosity and diffusion in the membranes of complex composition is currently a non-trivial technical challenge. We report fluorescence lifetime spectroscopy and imaging (FLIM) of a meso-substituted BODIPY molecular rotor localised...
متن کاملLipid peroxidation induces cholesterol domain formation in model membranes.
Numerous reports have established that lipid peroxidation contributes to cell injury by altering the basic physical properties and structural organization of membrane components. Oxidative modification of polyunsaturated phospholipids has been shown, in particular, to alter the intermolecular packing, thermodynamic, and phase parameters of the membrane bilayer. In this study, the effects of oxi...
متن کاملMolecular Insight into the Mutual Interactions of Two Transmembrane Domains of Human Glycine Receptor (TM23-GlyR), with the Lipid Bilayers
Appearing as a computational microscope, MD simulation can ‘zoom in’ to atomic resolution to assess detailed interactions of a membrane protein with its surrounding lipids, which play important roles in the stability and function of such proteins. This study has employed the molecular dynamics (MD) simulations, to determine the effect of added DMPC or DMTAP molecules on the structure of D...
متن کامل